
ROBOOP

A Robotics Object Oriented Package in C++

version 1.32

Documentation

Richard Gourdeau
Département de génie électrique

École Polytechnique de Montréal
C.P. 6079, Succ. Centre-Ville,

Montréal, Québec, Canada, H3C 3A7
email: richard.gourdeau@polymtl.ca

December 12, 2013

http://www.professeurs.polymtl.ca/richard.gourdeau/
mailto:richard.gourdeau@polymtl.ca

Contents

1 Introduction 3
1.1 Description . 3
1.2 Requirements . 3
1.3 Compiling . 4

1.3.1 Linux . 4
1.3.2 MS Windows . 4
1.3.3 Mac OSX . 6
1.3.4 QNX . 6

1.4 Copyright . 6
1.5 Version history . 7
1.6 Files in the distribution . 15
1.7 Doxygen documentation . 17

2 Reference manual 18
2.1 3D homogeneous transforms 18
2.2 The Quaternion class . 28
2.3 The Robot and mRobot classes 42

2.3.1 Robot and mRobot object initialization 43
2.3.2 Kinematics . 48
2.3.3 Dynamics . 58
2.3.4 Linearized dynamics 63

2.4 The Spl Cubic class . 69
2.5 The Spl path class . 71
2.6 The Spl Quaternion class . 73
2.7 The Trajectory Select class 75
2.8 The CLIK class . 77
2.9 The Proportional Derivative class 79
2.10 The Computed torque method class 82
2.11 The Resolve acc class . 85

1

2.12 The Impedance class . 88
2.13 The Control Select class . 91
2.14 The Stewart class . 94
2.15 The IO matrix file class . 95
2.16 Graphics . 98
2.17 Config class . 110
2.18 Miscellaneous . 114
2.19 Summary of functions . 120

3 Reporting bugs, contributions and comments 127
3.1 Reporting bugs . 127
3.2 Making a contribution to the package 128
3.3 Citing the package . 128

4 Credits and acknowledgments 129

5 Future developments 130

A Recursive Newton-Euler algorithms, DH notation 133
A.1 Recursive Newton-Euler formulation 133
A.2 Recursive linearized Newton-Euler formulation 134

B Recursive Newton-Euler algorithms, modified DH notation136
B.1 Recursive Newton-Euler formulation 136
B.2 Recursive linearized Newton-Euler formulation 137

C GNU Lesser General Public License 139

2

Chapter 1

Introduction

1.1 Description

This package (ROBOOP1) is a C++ robotics object oriented programming
toolbox suitable for synthesis, and simulation of robotic manipulator models
in an environment that provides “MATLAB like” features for the treatment
of matrices. Its is a portable tool that does not require the use of commercial
software. A class named Robot provides the implementation of the kinemat-
ics, the dynamics and the linearized dynamics of serial robotic manipulators.
A class named Stewart provides the implementation of the kinematics, the
dynamics for Stewart type parallel manipulators.

1.2 Requirements

This work uses the matrix library NEWMAT11 2 developed by Robert Davies.
Hence, the requirement for the ROBOOP are the same as for the NEW-
MAT11. Although make files are only provided for the Borland C++ 4.5
and 5.x, Visual C++ 6.0, Visual C++ 7.0 (.NET), and GNU G++ compilers,
other compilers supporting the STL could be used. See the file nm11.htm in
the newmat directory for more details.

The library Boost is used by ROBOOP. Under most Linux distributions
and Cygwin, Boost is a standard package (just install it). For Borland C++,
Visual C++ and QNX, you can copy the header directory boost from the

1Program source and documentation are available from the URL:
http://sourceforge.net/projects/roboop/

2available from the site http://www.robertnz.net/

3

http://www.boost.org/
http://sourceforge.net/projects/roboop/
http://www.robertnz.net/

(Boost library) in the roboop/source directory 3. Under Mac OSX, if you
are using Homebrew, just use the command brew install boost.

In order to use the graphic features of this package, the software gnuplot4

(version 3.5 on later) must be installed in the PATH of your computer. The
binary name is gnuplot.exe under Windows 95/98/NT/2000 (Win32) and
gnuplot under most of other platforms, you should edit the file gnugraph.h
if the binary name is different.

1.3 Compiling

1.3.1 Linux

Under Linux, you can compile using one of the three following ways (in the
roboop directory):

1. Using the command

make -f makefile.gcc

2. If you have CMake installed then use

cmake .

make

3. If you have Bakefile installed then use

bakefile -f gnu roboop.bkl

make

1.3.2 MS Windows

Borland Compiler : you can compile using one of the three following
ways:

1. Using the command

make -f makefile.bc5

2. If you have CMake installed then use the CMake program from the
Start menu to generate a Borland makefile, then from the prompt
(in the roboop directory) execute the command

3simpler but will not provide you with all the Boost features
4 gnuplot is freely available from the following location: http://www.gnuplot.info/

4

http://www.boost.org/
http://brew.sh/
http://www.cmake.org/
http://bakefile.sourceforge.net/
http://www.cmake.org/
http://www.gnuplot.info/

make

3. If you have Bakefile installed then use (in the roboop directory)

bakefile -f borland roboop.bkl

make

Cygwin and MinGW : you can compile using one of the three following
ways (in the roboop directory):

1. Using the command

make -f makefile.gw32

2. If you have CMake installed then use

cmake .

make

3. If you have Bakefile installed then use

ln -s /usr/include/boost-1_33_1/boost/ /usr/include/boost

bakefile -f gnu roboop.bkl

make

Visual C++ : you can compile using one of the following ways:

1. Using the command

nmake -f makefile.vcpp

2. Opening the Visual C++ 6.0 Workspace roboop.dsw or the Visual
C++ 7.0 Solution roboop.sln and building the targets.

3. If you have CMake installed then use the CMake program from the
Start menu to generate NMake makefiles, then from the prompt
(in the roboop directory) execute the command

nmake

4. If you have CMake installed then use the CMake program from the
Start menu to generate one of the different Visual Studio project
formats available, then by opening the Visual C++ Workspace or
Solution generated and building the targets.

5. If you have Bakefile installed then use (in the roboop directory)

bakefile -f msvc roboop.bkl

nmake

5

http://bakefile.sourceforge.net/
http://www.cmake.org/
http://bakefile.sourceforge.net/
http://www.cmake.org/
http://www.cmake.org/
http://bakefile.sourceforge.net/

or

bakefile -f msvc6proj roboop.bkl

and by opening the Visual C++ Workspace generated and building
the targets.

1.3.3 Mac OSX

You can compile using one of the following ways (in the roboop directory):

1. Using the command

make -f makefile.gccOSX

2. If you have CMake installed then use

cmake .

make

3. If you have Bakefile installed then use

bakefile -f gnu roboop.bkl

make

1.3.4 QNX

Under QNX, you can compile using the command (in the roboop directory):

make -f makefile.qnx

1.4 Copyright

ROBOOP – A robotics object oriented package in C++,
Copyright c© 1996–2004 Richard Gourdeau

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

This library is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

6

http://www.cmake.org/
http://bakefile.sourceforge.net/

You should have received a copy of the GNU Lesser General Public
License along with this library (see appendix C); if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

1.5 Version history

version 1.32 (2013/12/12)

OpenWatcom support is dropped.

Upgraded the matrix library to NEWMAT11 (beta) November 2008

Code clean up dealing with some warnings.

Call to Gnuplot under Windows is now using pipes.

Removed CVS keywords tags.

inv kin immobile joint index bug corrected (thanks to Matteo Malo-
sio).

version 1.31 (2006/12/14)

The project can now use CMake or Bakefile for automated makefile

generation. In future releases, hand made makefiles and project files
will be replaced by the output of CMake or Bakefile.

Corrected bug in irotk (reported by Chris Lightcap).

version 1.30 (2006/08/17)

Upgraded the matrix library to NEWMAT11 (beta) April 2006 enabling
compilation under GNU g++ 4.1.x.

version 1.29 (2006/05/19)

OpenWatcom support is (temporally) suspended. Fixed gear ratio bug
for viscous friction (reported by Carmine Lia). Fix set q, set qp bug
in xdot (reported by Philip Gruebele)

The following changes have been contributed by Etienne Lachance

• “Clean up” of some header files.

• Member functions add and select are now in template form.

• Using Boost shared pointers in gnugraph.

7

http://www.cmake.org/
http://bakefile.sourceforge.net/
http://www.cmake.org/
http://bakefile.sourceforge.net/

• The inverse kinematics function (inv kin) should return the so-
lution without changing the robot position (reported by J.D.
Yamokoski).

• Functions Rhino DH, Puma DH, Schilling DH, Rhino mDH, Puma mDH

and Schilling mDH use const Robot basic reference instead of
const Robot basic pointer.

• Prevent exceptions from leaving Robot basic destructor.

• Catch exception by reference instead of by value.

version 1.28 (2005/12/07)

The following changes have been contributed by Etienne Lachance

• Removing unnecessary copy constructor and the assignment op-
erator (operator=) in many classes.

• In the Quaternion class, the operator* and operator/ are now
non-member functions when one of the operand is a real, it now
supports q2 = c * q1 and ¿ q2 = q1 * c

version 1.27 (2005/10/11)

It is now possible to turn off warning messages in the Config class.

version 1.26 (2005/07/05)

• New Class Stewart contributed by Samuel Belanger (intergated
by Etienne Lachance and Richard Gourdeau): new files stewart.h
and stewart.cpp and modified bench.cpp.

• Fixed max() bug for VC++ 6.0 (utils.cpp).

• Typos in Doxygen documentation.

version 1.25 (2005/06/13) Fixed catch(bad alloc) in constructors.

The following changes have been contributed by Etienne Lachance

• The desired joint acceleration was missing in the computed torque
method (bug reported by Carmine Lia).

• Added missing file message in trajectory.cpp

The following changes have been contributed by Carmine Lia

• Added defined(MINGW32) for temp files in gnugraph.cpp.

• Added pinv in utils.cpp.

8

version 1.24 (2005/03/18)

The following changes have been contributed by Brian Galardo, Jean-
Pascal Joary, Etienne Lachance:

• Added member functions Robot::inv schilling,

mRobot::inv schilling and mRobot min para::inv schilling

for the Schilling Titan II robot arm,

• Fixed previous bug on Rhino and Puma inverse kinematics.

by Etienne Lachance:

• Some “clean-up” in the config.h and config.cpp files,

and by Stephen Webb :

• minor bug in constructor Robot basic(const Robot basic & x).

version 1.23 (2004/09/18)

The following change has been contributed by Etienne Lachance:

• Configuration files can use degrees for the angles with the option
angle in degree set to 1.

version 1.22 (2004/09/10)

The following change has been contributed by Etienne Lachance:

• In config.cpp: parameter value can now contain space and fixed
print member function.

Carl Glen Henshaw provided a makefile for MAC OS X.

version 1.21 (2004/08/16)

The following changes have been contributed by Etienne Lachance

• Fixed some missing use namespace #define.

• Merge all select * and add * functions into overloaded select()

and add() functions.

• made gnuplot.cpp and config.cpp independent of robot.h and
utils.h.

• New constructors for Robot and mRobot based on input matrices
(this change is NOT backward compatible)

9

The following changes have been contributed by Ethan Tira-Thompson

• Supports for Link::immobile flag so jacobians and deltas are 0
for immobile joints.

• Jacobians will only contain entries for mobile joints - otherwise
NaNs result in later processing.

• Added parameters to jacobian functions to generate for frames
other than the end effector.

• Can now do inverse kinematics for frames other than end effector.

• Tolerance in inv kin based on USING FLOAT from newmat’s include.h

version 1.20 (2004/07/02)

The following changes have been contributed by Ethan Tira-Thompson

• Added support for newmat’s use namespace #define, using ROBOOP

namespace.

• Fixed some problem using float as Real type.

The following changes have been contributed by Etienne Lachance

• Added the following class: Dynamics, Trajectory Select,

Proportional Derivative and Control Select.

• Added a new demo program, call demo 2dof pd. This new demo
program shows how to use the class mentioned above.

• Protection added on input vector of the trans function.

• Added a joint offset logic. This idea has been proposed by
Ethan Tira-Thompson.

• Added Doxygen documentation.

• Replace files impedance.* by controller.*.

version 1.19 (2004/05/12) Upgraded the matrix library from NEWMAT10
to NEWMAT11 (beta). Visual C++ .NET and Borland C++ Builder 6
compilers are now supported. Updated documentation.

version 1.18 (2004/05/05) ROBOOP is relicensed to the GNU Lesser Gen-
eral Public License. Updated documentation.

The following changes have been contributed by Vincent Drolet and
Etienne Lachance:

10

• Added the following members function in class Robot: inv kin rhino,
inv kin puma and robotType inv kin.

version 1.17 (2004/04/02) Numerous warning messages were corrected un-
der VC++. Updated documentation.

The following changes have been contributed by Etienne Lachance:

• Added class Impedance which implements the impedance con-
troller.

• Added function perturb robot.

• Added class Resolve acc which implements the resolve rate ac-
celeration position controller.

• Added class Computed torque method which implements the com-
puted torque method position controller.

• Class Config can now write data into a configuration file.

• Fixed bugs in Quaternion class member functions: exponential
and logarithm.

• Added Quaternion class member function power.

• Added the following Quaternion class non member functions:
Omega, Slerp, Slerp prime, Squad and Squad prime.

• Provided Spl Quaternion class to generate quaternions cubic
splines.

• Added class Spl Cubic to generate cubic splines.

• Added class Spl path to generate 3D cubic splines.

• Provided CLIK class for closed loop inverse kinematics.

• Added member functions G and C in all robot classes.

version 1.16 (2003/09/24) The OpenWatcom C++ compiler is now sup-
ported. Updated documentation.

version 1.15 (2003/06/18) The following changes have been contributed
by Etienne Lachance:

• Updated documentation.

• Definitions in file gnugraph.cpp are now in gnugraph.h.

• Class Plot2d, GNUcurve are now using STL string instead of
char*.

11

http://www.openwatcom.org

• Added member functions jacobian dot() and jacobian DLS inv()

in all robot classes.

• Added class Config to read configuration file.

• Replaced Robot basic(const char *filename) by Robot basic(const

string & filename). The new constructor uses the class Config.

• Provided Plot file class to generate graphics from a data file.

• Added the following Quaternion class member functions: exponential,
logarithm, dot product, dot, E.

• Fixed bugs in IO matrix file class.

• Developed linearized equations for modified DH notations. The
equations are implemented in dq torque, dqp torque, dtau dq

and dtau dqp.

• Added examples in demo.cpp related to IO matrix file, Plot file

and Config.

version 1.14 (2003/04/17) Updated documentation. The Watcom com-
piler is no longer supported (problems with STL and streams). The
following changes have been contributed by Etienne Lachance:

• The classes RobotMotor and mRobotMotor no longer exist and
are now integrated in the Robot and mRobot classes.

• The Robot and mRobot classes are now derived from the Robot basic

virtual class.

• Removed class mlink. DH and modified DH parameters are now
included in link.

• Added kine pd().

• Created a new torque member function that allowed to have load
on last link.

• Fixed bug in modified DH dynamics.

• Added a class Quaternion.

• Added the program rtest to compare results with Peter Corke
MATLAB toolbox.

• Added member function set plot2d to generate plots using the
Plot2d class.

• Added utility class IO matrix file dealing with data files (not
documented yet).

12

http://www.cat.csiro.au/cmst/staff/pic/robot/

version 1.13 (2002/08/09) Moved the arrays of ColumnVector to the con-
structors for the dynamics and linearized dynamics for a ≈ 10% gain
in speed (thanks to Etienne Lachance for the suggestion). Added the
mRobot and mRobotMotor classes using the modified Denavit-Hartenberg
notation. Updated documentation.

version 1.12 (2002/02/04) Upgraded the matrix library from NEWMAT09
to NEWMAT10.

version 1.11 (2001/06/06) Fixed bugs for prismatic joints in the dynamics
routines (reported by Hassan Abedi). Updated documentation.

version 1.10 (2001/04/30) Changed the license to GNU General Public
License. Workspace for MS Visual C++ 6.0. New makefiles using im-
plicit rules. New class RobotMotor that includes motors parameters
(rotor inertia, gear ratio and friction coefficients). Updated documen-
tation.

version 1.09 (98/09/27) Makefile for MS Visual C++ 6.0.

version 1.08 (98/06/1) Changes to robot.cpp and robot.h to avoid the
warning messages:

initialization of non-const reference ‘*’ from rvalue ‘*’

Fixed function ieulzxz in homogen.cpp thanks to Kilian Pohl.

version 1.07 (98/05/12) The bench.cpp program is more portable. Sim-
pler makefile for Borland C++. New targets in makefiles (clean and
veryclean). Removed the CVS Log tags from the sources. Compiler
option -O now works under gcc 2.7.2 thanks to the new newmat.h

provided by Robert Davies.

version 1.06 (97/11/21) The function inv kin modified to use the Jaco-
bian by default in the iterative procedure (≈ 1.8× faster). Updated
documentation.

version 1.05 (97/11/17) Added make file for GNU G++ under Windows
95/NT using Cygnus GNU-Win32 compiler. Added optimization flags
under GNU G++. Updated documentation.

version 1.04 (97/11/14) Added make file for GNU G++ and graphic sup-
port through gnuplot (2d plots). Updated documentation.

13

http://sources.redhat.com/cygwin/

version 1.03 (97/11/01) Added adaptive step size integration. Changes to
the documentation.

version 1.02 (97/10/21) Upgraded the matrix library from NEWMAT08A
to NEWMAT09. New directory structure : newmat08 is replaced by
newmat. Conditional compilation of delete [] for pre 2.1 C++ com-
pilers has been removed since NEWMAT09 no longer supports these
compilers. Minor changes to the documentation.

version 1.01 (97/01/17) Conditional compilation of delete [] for pre 2.1
C++ compilers. Changes to the documentation.

version 1.0 (96/12/15) First public release of the package.

14

1.6 Files in the distribution

readme txt readme file
makefile gcc make file for GNU G++ Linux
makefile gccOSX make file for GNU G++ MAC OS X
makefile gw32 make file for Cygwin (Win32)
makefile bc5 make file for Borland C++ 4.5, 5.x (Win32)
makefile vcpp make file for Visual C++ 5.0 and 6.0(Win32)
makefile qnx make file for QNX
CMakeLists txt Confguration file for CMake
roboop bkl Configuration file for Bakefile
roboop dsw workspace for Visual C++ 6.0 (Win32)
bench dsp project file used by roboop.dsw

demo dsp project file used by roboop.dsw

demo 2dof pd dsp project file used by roboop.dsw

newmat dsp project file used by roboop.dsw

roboop dsp project file used by roboop.dsw

rtest dsp project file used by roboop.dsw

roboop sln solution for Visual C++ 7.0 (Win32)
bench vcproj project file used by roboop.sln

demo vcproj project file used by roboop.sln

demo 2dof pd vcproj project file used by roboop.sln

newmat vcproj project file used by roboop.sln

roboop vcproj project file used by roboop.sln

rtest vcproj project file used by roboop.sln

demo txt output of the demo program

newmat directory of the matrix library NEWMAT11
see the file nm11.htm

docs documentation directory
gnugpl txt GNU General Public License
gnulgpl txt GNU Lesser General Public License
robot ps documentation in postscript format
robot pdf documentation in PDF format

doxy Doxygen documentation directory
roboop doxygen Doxygen configuration file

15

source the ROBOOP program source directory
CMakeLists txt Confguration file for CMake
robot h header file
clik h header file for CLIK
config h header file for configuration class
controller h header file for controllers
control select h header file for Control Select class
dynamics sim h header file for Dynamics class
gnugraph h header file for the graphics
quaternion h header file for the quaternions
stewart h header file for the Stewart classs
trajectory h header file for the splines
utils h header file utility functions
bench cpp benchmark program file
clik cpp closed loop inverse kinematics CLIK

comp dq cpp simplified version of delta t with no dqp and dqpp

comp dqp cpp simplified version of delta t with no dq and dqpp

config cpp configuration class members functions
controller cpp some controllers functions
control select cpp controller selection functions
delta t cpp compute torque variation w/r to dq, dqp and dqpp

demo cpp demo program file
demo 2dof pd cpp demo program file
dynamics cpp dynamics functions
dynamics sim cpp simulation dynamics functions
gnugraph cpp graphics functions
homogen cpp homogeneous transform functions
impedance cpp impedance controller
invkine cpp inverse kinematics functions
kinemat cpp kinematics functions
quaternion cpp quaternions functions
robot cpp constructors and other stuff
rtest cpp testing program file
test txt testing data file
sensitiv cpp partial derivatives of robot dynamics
stewart cpp implemantation of the Stewart classs
trajectory cpp translation and rotation splines
utils cpp miscellaneous

16

conf configuration files directory
pd 2dof conf PD controller parameters for the 2 dof robot
puma560 dh conf PUMA robot parameters standard D-H
puma560 mdh conf PUMA robot parameters modified D-H
q 2dod dat desired trajectory for the 2 dof robot
rhino560 dh conf RHINO robot parameters standard D-H
rhino560 mdh conf RHINO robot parameters modified D-H
rr dh conf 2 dof robot parameters standard D-H
stewart conf a Stewart platform parameters file

1.7 Doxygen documentation

Source code now has Doxygen compatible documentation. To obtain the
documentation (under Linux) simply run doxygen roboop doxygen in the doxy
directory. It will creates html and latex directories.

The main html page can be accessed using the index.html file. To obtain
the latex documentation simply run the Makefile in the latex directory.

17

Chapter 2

Reference manual

This package uses data types defined by the NEWMAT11 matrix library:

• Real : the type for floating point values. It can be either a float

or a double as defined in the header file include.h in the newmat

directory.

• Matrix : the type for matrices as defined in the NEWMAT11 docu-
mentation.

• ColumnVector : a type for column vectors derived from Matrix.

• ReturnMatrix : the type used by functions for returning any type of
matrix (Matrix, ColumnVector, RowVector, etc).

The file demo.cpp presents examples for the use of some functions in the
package. The time required to compute some functions for a 6 dof robot can
be obtained with the file bench.cpp.

2.1 3D homogeneous transforms

In this section, functions dealing with 4×4 homogeneous transform matrices
are described.

18

eulzxz

Syntax

ReturnMatrix eulzxz(const ColumnVector & a);

Description

Given a column vector a γ1
β
γ2

 (2.1)

this function returns the homogeneous transform matrix given by

Rot(z, γ1)Rot(x, β)Rot(z, γ2) (2.2)

Note: the column vector a must have a length of at least 3. Only the first
3 elements are used.

Return Value

Matrix

19

ieulzxz

Syntax

ReturnMatrix ieulzxz(const Matrix & R);

Description

Given a homogeneous transform matrix R, this function returns a column
vector γ1

β
γ2

 (2.3)

such that the 3× 3 rotation bloc of the matrix

Rot(z, γ1)Rot(x, β)Rot(z, γ2) (2.4)

is equal to the 3× 3 rotation bloc of the matrix R.

Return Value

ColumnVector.

20

irotk

Syntax

ReturnMatrix irotk(const Matrix & R);

Description

Given a homogeneous transform matrix R, this function returns a column
vector[

k
θ

]
(2.5)

with k a unit vector such that the 3× 3 rotation bloc of the matrix

Rot(k, θ) (2.6)

is equal to the 3× 3 rotation bloc of the matrix R.

Return Value

ColumnVector.

21

irpy

Syntax

ReturnMatrix irpy(const Matrix & R);

Description

Given a homogeneous transform matrix R, this function returns a column
vector α

β
γ

 (2.7)

such that the 3× 3 rotation bloc of the matrix

Rot(z, γ)Rot(y, β)Rot(x, α) (2.8)

is equal to the 3× 3 rotation bloc of the matrix R.

Return Value

ColumnVector.

22

rotd

Syntax

ReturnMatrix rotd(const Real theta,

const ColumnVector & k1,

const ColumnVector & k2);

Description

This function returns the matrix of a rotation of an angle theta around the
oriented line segment defined by the points k1 and k2.
Note: the column vectors k1 and k2 must have a length of at least 3. Only
the first 3 elements are used.

Return Value

Matrix

23

rotk

Syntax

ReturnMatrix rotk(const Real theta,

const ColumnVector & k);

Description

This function returns the matrix of a rotation of an angle theta around the
vector k.

Rot(k, θ) (2.9)

Note: the column vector k must have a length of at least 3. Only the first
3 elements are used.

Return Value

Matrix

24

rpy

Syntax

ReturnMatrix rpy(const ColumnVector & a);

Description

Given a column vector a α
β
γ

 (2.10)

this function returns the homogeneous transform matrix given by

Rot(z, γ)Rot(y, β)Rot(x, α) (2.11)

Note: the column vector a must have a length of at least 3. Only the first
3 elements are used.

Return Value

Matrix

25

rotx, roty, rotz

Syntax

ReturnMatrix rotx(const Real alpha);

ReturnMatrix roty(const Real beta);

ReturnMatrix rotz(const Real gamma);

Description

These functions return the elementary rotation matrices:

Rot(x, α) =


1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

 (2.12)

Rot(y, β) =


cosβ 0 sinβ 0

0 1 0 0
− sinβ 0 cosβ 0

0 0 0 1

 (2.13)

Rot(z, γ) =


cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1

 (2.14)

Return Value

Matrix

26

trans

Syntax

ReturnMatrix trans(const ColumnVector & a);

Description

Given a column vector a, this function returns the following matrix:

Trans(a) =


1 0 0 a1
0 1 0 a2
0 0 1 a3
0 0 0 1

 (2.15)

Note: the column vector a must have a length of at least 3. Only the first
3 elements are used.

Return Value

Matrix

27

2.2 The Quaternion class

The Quaternion class deals with quaternions. Unit quaternions are used to
represent rotations. It is composed of two elements: a scalar s (Real s)
and a vector v (ColumnVector v) representing a quaternion (see[1]).

q = w + xi+ yj + zk (2.16)

= (s, v) (2.17)

An object of this class can be initialize with no parameter (s = 1 and
v = 0), from an other unit quaternion, from an angle of rotation around a
unit vector, from a rotation matrix, from a quaternion object or from the
four components of a quaternion. The constructors does not guarantee that
quaternions will be unit.

constructors

Syntax

Quaternion();

Quaternion(const Quaternion & q);

Quaternion(const Real angle_in_rad, const ColumnVector & axis);

Quaternion(const Real s, const Real v1, const Real v2, const Real v3);

Quaternion(const Matrix & R);

Quaternion & operator=(const Quaternion & q);

Description

Quaternion object constructors, copy constructor and equal operator.

Return Value

None

28

operators

Syntax

Quaternion operator+(const Quaternion & q)const;

Quaternion operator-(const Quaternion & q)const;

Quaternion operator*(const Quaternion & q)const;

Quaternion operator*(const ColumnVector & vec)const;

Quaternion operator*(constReal c)const;

Quaternion operator/(const Quaternion & q)const;

Quaternion operator/(constReal c)const;

Description

The operators +, −, ∗ and / for quaternion are implemented. The operators
∗ and / will generate unit quaternions only if the quaternions involve are
unity.

Return Value

Quaternion

29

conjugate and inverse

Syntax

Quaternion conjugate()const;

Quaternion i()const;

Description

Compute the conjugate of the quaternion (or the inverse if it’s a unit quater-
nion). The conjugate is defined as

q∗ = w − xi− yj − zk (2.18)

= (s,−v) (2.19)

Return Value

Quaternion

30

exponential and logarithm

Syntax

Quaternion exp()const;

Quaternion Log()const;

Quaternion power(const Real t)const;

Description

A unit quaternion can be represented by q = cos(θ) + usin(θ). Euler’s
identity for complex numbers generalizes to quaternions exp(uθ) = cos(θ) +
usin(θ), where exp(x) is replace by exp(uθ) and uu is replace by −1. With
this identity we obtain the exponential of the quaternion q = (0, θv), where q
is not necessary a unit quaternion. It is then possible to define the logarithm
and the power of a unit quaternion [2].

Log(q) = Log(cos(θ) + u sin(θ)) = Log(exp(uθ)) = uθ (2.20)

qt = cos(tθ) + u sin(tθ) (2.21)

Log(q) is not necessary a unit quaternion even if q is a unit quaternion.

Return Value

Quaternion for exp, Log

31

dot product

Syntax

Real dot_prod(const Quaternion & q)const;

Description

Compute the dot product of quaternions.

Return Value

Real

32

quaternion time derivative

Syntax

Quaternion dot(const ColumnVector & w, const short sign)const;

ReturnMatrix E(const short sign)const;

Description

The quaternion time derivative is obtain from the quaternion propagation
law [2].

ṡ = −1

2
vTw (2.22)

v̇ =
1

2
E(s, v)w (2.23)

where

E = ηI − S(ε) in base frame
E = ηI + S(ε) in body frame

(2.24)

The choice of reference system (base or body) for w is assign by sign. A
value of 1 is for base frame while −1 is for body frame.

Return Value

Quaternion for dot
Matrix for E

33

unit and norm

Syntax

Quaternion & unit();

Real norm()const;

Description

unit() makes the quaternion a unit quaternion, norm() computes and re-
turns the norm of the quaternion. norm sqr() computes and returns the
square norm of the quaternion.

Return Value

Quaternion for unit()
Real for norm() and norm sqr()

34

s and v

Syntax

Real s()const;

void set_s(const Real s);

ReturnMatrix v()const;

void set_v(const ColumnVector & v);

Description

The functions s() and v() returns one of the components of a quaternion
(s or v), while set s() and set v() can assign a value to one of the com-
ponents.

Return Value

None for set s() and set v()

Real for s()
Matrix for v()

35

Rotation matrices

Syntax

ReturnMatrix R() const;

ReturnMatrix T() const;

Description

Returns a rotation matrix from the quaternion (R() returns a 3× 3 matrix
and T() returns a 4× 4 matrix).

Return Value

Matrix

36

Omega, ω

Syntax

ReturnMatrix Omega(const Quaternion & q, const Quaternion & q_dot);

Description

Omega is not a member function of the class Quaternion. The function
returned the angular velocity obtain from a quaternion and it’s time deriva-
tive. Like the member function dot, it use the quaternions propagation law
[2].

Return Value

ColumnVector

37

Slerp

Syntax

Quaternion Slerp(const Quaternion & q0, const Quaternion & q1,

const Real t);

Description

Slerp stands for Spherical Linear Interpolation. Slerp is not a member func-
tion of the class Quaternion. The quaternions q0 and q1 needs to be unit
quaternions. It returns a unit quaternion. As the parameter t uniformly
varies between 0 and 1, the values q(t) are required to uniformly vary along
the circular arc from q0 to q1.

It is customary to choose the sign G on q1 so that q0 ·Gq1 ≥ 0 (the angle
between q0 and Gq1 is acute). This choice avoids extra spinning caused by
the interpolated rotations [2]. For unit quaternions Slerp is defined as

q =

{
q0(q

−1
0 q1)

t if q0 · q1 ≥ 0

q0(q
−1
0 (−q1))t otherwise

(2.25)

Return Value

Quaternion

38

Slerp prime

Syntax

Quaternion Slerp_prime(const Quaternion & q0, const Quaternion & q1,

const Real t);

Description

Slerp prime represent the Slerp derivative. Slerp prime is not a member
function of the class Quaternion. The quaternions q0 and q1 needs to be
unit quaternions. It does not necessary returns a unit quaternion.

It is customary to choose the sign G on q1 so that q0 ·Gq1 ≥ 0 (the angle
between q0 and Gq1 is acute). This choice avoids extra spinning caused by
the interpolated rotations [2]. For unit quaternions Slerp is defined as

q =

{
Slerp(q0, q1, t)Log(q−10 q1) if q0 · q1 ≥ 0

Slerp(q0, q1, t)Log(q−10 (−q1)) otherwise
(2.26)

Return Value

Quaternion

39

Squad

Syntax

Quaternion Squad(const Quaternion & p, const Quaternion & a,

const Quaternion & b, const Quaternion & r,

const Real t);

Description

Squad stands for Spherical Cubic Interpolation. Squad is not a member
function of the class Quaternion. The quaternions p, a, b and r needs to be
unit quaternions. It returns a unit quaternion.

Squad uses an iterative of three slerps. Suppose four quaternions, p, a,
b and r as the ordered vertices of quadrilateral. Interpolate c along p to q
using slerp and d along a to b also using slerp. Now interpolate q along c to
d [2]. Squad is defined as

q = Slerp(Slerp(p, r, t), Slerp(a, b, t), 2t(1− t)); (2.27)

Return Value

Quaternion

40

Squad prime

Syntax

Quaternion Squad_prime(const Quaternion & p, const Quaternion & a,

const Quaternion & b, const Quaternion & q,

const Real t);

Description

Squad prime represent the Squad derivative. Squad prime is not a member
function of the class Quaternion.

Return Value

Quaternion

41

2.3 The Robot and mRobot classes

The Robot and mRobot classes are composed of the following data elements:

• the number of degree of freedom n (int dof);

• the gravity acceleration vector (−g) expressed in the base frame
(ColumnVector gravity);

• one array of dimension n of Link object elements (Link *links);

and the member functions providing the different algorithms implementation
(see tables 2.2–2.17).

The Link class (see table 2.1) encapsulates all the data and functional-
ity required to characterize a single “link” as it is defined by Denavit and
Hartenberg (standard notation [3], or modified notation [4]). It is initialized
by providing the joint type (int joint type: revolute=0, prismatic=1)
and the parameters θ, d, a, α (Real theta, d, a, alpha) and a boolean
value Bool DH (true=standard false=modified) It also contains the iner-
tial parameters data: mass m (Real m), center of mass position vector r
(ColumnVector r) and inertia tensor matrix Ic (Matrix I). In this case,
r is given with respect to the link coordinate frame and Ic is with respect
to a coordinate frame parallel to the link coordinate frame and located at
the center of mass of m. The dynamic model takes into account the motors
inertia, gear ratio and frictions. The values Im and Gr representing respec-
tively the motors rotor inertia Im and gear ratio Gr; B and Cf representing
respectively the motors viscous B and Coulomb friction Cf coefficients:

τf = Bq̇ + Cf sign(q̇)

On initialization, the constructor sets up the matrices R and p such that

R =

 cos θ − cosα sin θ sinα sin θ
sin θ cosα cos θ − sinα cos θ

0 sinα cosα

 (2.28)

p =

 a cos θ
a sin θ
d

 (2.29)

for the standard D-H notation and

R =

 cos θ − sin θ 0
cosα sin θ cosα cos θ − sinα
sinα sin θ sinα cos θ cosα

 (2.30)

42

Table 2.1: The Link class data parameters

Kinematic Inertial Motor

int joint type Real m Real Im

Real theta, d, a, alpha ColumnVector r Real Gr

Real joint offset Matrix I Real B

ColumnVector p Real Cf

Matrix R,

Bool DH

Real theta min, theta max

Real joint offset

p =

 a
−d sinα
d cosα

 (2.31)

for the modified D-H notation.
If the link corresponds to a revolute (prismatic) joint, then only θ (d)

can be changed after the link definition. This is done through the member
function transform which sets the new value of q (θ or d) and updates the
matrices R and p which compose the link homogeneous transform:

T =

[
R p
0 1

]
(2.32)

Only the changing elements are computed since the data of an instance of
a class is persistent throughout the scope of definition of the instance (see
[5]). In standard notation, the elements (3,2) and (3,3) of R provide storage
for cosα and sinα which are computed only once. In modified notation, the
elements (3,3) and (2,3) of R provide storage for cosα and sinα. So as to
make the implementation faster, only the elements of R and p involving θ
(d) are updated with a revolute (prismatic) joint.

2.3.1 Robot and mRobot object initialization

The Robot and mRobot classes provide a default constructor that creates
a 1 dof robot. A ndof × 19 matrix containing the kinematic and inertial
parameters (as for the Robot class) can be supplied upon initialization. A

43

ndof × 19 matrix containing the kinematic and inertial parameters (as for
the Robot class) can be supplied along with a ndof × 4 matrix providing
the motors inertia, gear ratio and friction coefficients. A ndof × 23 matrix
(kinematic, inertial and motor parameters) can also be used. The structure
of the initialization matrix is:

Column Variable Description

1 σ joint type (revolute=0, prismatic=1)
2 θ Denavit-Hartenberg parameter
3 d Denavit-Hartenberg parameter
4 a Denavit-Hartenberg parameter
5 α Denavit-Hartenberg parameter
6 θmin minimum value of joint variable
7 θmax maximum value of joint variable
8 θoff joint offset
9 m mass of the link
10 cx center of mass along axis x
11 cy center of mass along axis y
12 cz center of mass along axis z
13 Ixx element xx of the inertia tensor matrix
14 Ixy element xy of the inertia tensor matrix
15 Ixz element xz of the inertia tensor matrix
16 Iyy element yy of the inertia tensor matrix
17 Iyz element yz of the inertia tensor matrix
18 Izz element zz of the inertia tensor matrix
19 Im motor rotor inertia
20 Gr motor gear ratio
21 B motor viscous friction coefficient
22 Cf motor Coulomb friction coefficient
23 immobile flag for the kinematics and inverse kinematics

(if true joint is locked, if false joint is free)

44

constructors

Syntax

Standard notation:

Robot(const int ndof=1);

Robot(const Matrix & initrobot);

Robot(const Matrix & initrobot, const Matrix & initmotor);

Robot(const Robot & x);

Robot(const string & filename, const string & robotName);

Modified notation:

mRobot(const int ndof=1);

mRobot(const Matrix & initrobot_motor);

mRobot(const Matrix & initrobot, const Matrix & initmotor);

mRobot(const mRobot & x);

mRobot(const string & filename, const string & robotName);

Description

Robot and mRobot object constructors, copy constructor and equal operator.

Return Value

None

45

get q, get qp, get qpp

Syntax

ReturnMatrix get_q(void);

Real get_q(const int i);

ReturnMatrix get_qp(void);

Real get_qp(const int i);

ReturnMatrix get_qp(void);

Real get_qp(const int i);

Description

These functions return a column vector containing the joint variables (get q),
velocities (get qp) or accelerations (get qpp) when called with no argument.
It returns the scalar value for the ith joint variable when called with an in-
teger argument.

Return Value

ColumnVector or Real

46

set q, set qp, set qpp

Syntax

void set_q(const ColumnVector & q);

void set_q(const Matrix & q);

void set_q(const Real q, const int i);

void set_qp(const ColumnVector & qp);

void set_qp(const Matrix & qp);

void set_qp(const Real qp, const int i);

void set_qpp(const ColumnVector & qpp);

void set_qpp(const Matrix & qpp);

void set_qpp(const Real qpp, const int i);

Description

These functions set the joint variables (velocities or accelerations) or the ith

joint variable (velocity or acceleration) to q (qp or qpp).

Return Value

None

47

2.3.2 Kinematics

The forward kinematic model defines the relation:

0T n = G(q) (2.33)

where 0T n is the homogeneous transform representing the position and ori-
entation of the manipulator tool (frame n) in the base frame 0. The inverse
kinematic model is defined by

q = G−1(0T n) (2.34)

In general, this equation allows multiple solutions.

48

inv kin

Syntax

ReturnMatrix inv_kin(const Matrix & Tobj, const int mj = 0);

ReturnMatrix inv_kin(const Matrix & Tobj, const int mj,

const int endlink, bool & converge);

Description

The inverse kinematic model is computed using a Newton-Raphson tech-
nique. If mj == 0, it is based on the following [6]:

0T n(q∗) = 0T n(q + δq) ≈ 0T n(q)δT (δq) = T obj (2.35)

δT (δq) = (0T n(q))−1T obj = I + ∆ (2.36)

∆ =


0 −δz δy dx
δz 0 −δx dy
−δy δx 0 dz

0 0 0 0

 (2.37)

nδχ =
[
dx dy dz δx δy δz

]T
(2.38)

nδχ ≈ nJ(q)δq (2.39)

If mj == 1, it is based on the following Taylor expansion [6, 7]:

0T n(q∗) = 0T n(q + δq) ≈ 0T n(q) +
n∑
i=1

∂0T n
∂qi

δqi (2.40)

The function dTdqi computes these partial derivatives.
Given the desired position represented by the homogeneous transform

Tobj, this function return the column vector of joint variables that is cor-
responding to this position. On return, the value converge is true if the
procedure has converge to values that give the correct position and false
otherwise.
Note: mj == 0 is faster (≈ 1.8×) than mj == 1. Also, mj == 1 might
converge when mj == 0 does not.

Return Value

ColumnVector

49

inv kin rhino

Syntax

ReturnMatrix inv_kin_rhino(const Matrix & Tobj,

bool & converge)

Description

This function performs the Rhino robot inverse kinematics.

Return Value

ColumnVector

50

inv kin puma

Syntax

ReturnMatrix inv_kin_puma(const Matrix & Tobj,

bool & converge)

Description

This function performs the Puma robot inverse kinematics.

Return Value

ColumnVector

51

jacobian

Syntax

ReturnMatrix jacobian(const int ref=0);

ReturnMatrix jacobian(const int endlink, const int ref)const;

Description

The manipulator Jacobian defines the relation between the velocities in joint
space q̇ and in the Cartesian space χ̇ expressed in frame i:

iχ̇ = iJ(q)q̇ (2.41)

or the relation between small variations in joint space δq and small displace-
ments in the Cartesian space δχ:

iδχ ≈ iJ(q)δq (2.42)

The manipulation Jacobian expressed in the base frame is given by (see [8])

0J(q) =
[

0J1(q) 0J2(q) · · · 0Jn(q)
]

(2.43)

with

0J i(q) =

[
zi−1 × i−1pn

zi−1

]
for a revolute joint (2.44)

0J i(q) =

[
zi−1

0

]
for a prismatic joint (2.45)

where zi−1 and i−1pn are expressed in the base frame and × is the vector
cross product. Expressed in the ith frame, the Jacobian is given by

iJ(q) =

[
(0Ri)

T 0
0 (0Ri)

T

]
0J(q) (2.46)

This function returns iJ(q) (i = 0 when not specified) for the endlink

(last link when not specified).

Return Value

Matrix

52

jacobian dot

Syntax

ReturnMatrix jacobian_dot(const int ref=0);

Description

The manipulator Jacobian time derivative can be used to compute the end
effector acceleration due to joints velocities [9]:

iẍ = iJ̇(q, q̇)q̇ (2.47)

The Jacobian time derivative expressed in the base frame is given by [9]

0J̇(q, q̇) =
[

0J̇1(q, q̇) 0J̇2(q, q̇) · · · 0J̇n(q, q̇)
]

(2.48)

with

0J̇ i(q, q̇) =

[
ωi−1 × zi

ωi−1 ×i−1 pn + zi ×i−1 ṗn

]
for a revolute joint(2.49)

0J̇ i(q, q̇) =

[
0
0

]
for a prismatic joint (2.50)

where zi and i−1pn are expressed in the base frame and × is the vector
cross product. Expressed in the ith frame, the Jacobian time derivative is
given by

iJ̇(q, q̇) =

[
(0Ri)

T 0
0 (0Ri)

T

]
0J̇(q, q̇) (2.51)

This function returns iJ̇(q, q̇)(i=0 when not specified).

Return Value

Matrix

53

jacobian DLS inv

Syntax

ReturnMatrix jacobian_DLS_inv(const Real eps, const Real lambda_max,

const int ref=0);

Description

This function returns the inverse Jacobian Matrix for 6 dof manipulator
based on the Damped Least-Squares scheme [10]. Using the singular value
decomposition, the Jacobian matrix is

J =
6∑
i=1

σiuiv
T
i (2.52)

where vi and ui are the input and output vectors, and σi are the singular
values ordered so that σi ≥ σ2 ≥ · · ·σr ≥ 0, with r being the rank of J .
Based on the Damped Least-Squares the inverse Jacobian can be written as

J−1 =
6∑
i=1

σi
σ2i + λ2

viu
T
i (2.53)

where λ is the damping factor. A singular region can be selected on the basis
of the smallest singular value of J. Outside the region the exact solution is
returned, while inside the region a configuration-varying damping factor is
introduced to obtain the desired approximate solution. This region is defined
as

λ2 =

{
0 if σ6 ≥ ε(

1 − (σ6ε)2
)
λ2max otherwise

(2.54)

Return Value

Matrix

54

kine

Syntax

void kine(Matrix & Rot, ColumnVector & pos);

void kine(Matrix & Rot, ColumnVector & pos, const int j);

ReturnMatrix kine(void);

ReturnMatrix kine(const int j);

Description

The forward kinematic model is provided by implementing the following
recursion:

0Ri = 0Ri−1
i−1Ri (2.55)

0pi = 0pi−1 + 0Ri−1pi (2.56)

where

0T i =

[
0Ri

0pi
0 1

]
(2.57)

The overloaded function kine can return the orientation and position or
the equivalent homogeneous transform for the last (if not supplied) or the
ith link. For example:

Robot myrobot(init_matrix);

Matrix Thomo, R;

ColumnVector p;

/* forward kinematics up to the last link */

Thomo = myrobot.kine();

/* forward kinematics up to the 2nd link */

Thomo = myrobot.kine(2);

/* forward kinematics up to the last link, outputs R and p */

myrobot.kine(R,p);

/* forward kinematics up to the 2nd link, outputs R and p */

myrobot.kine(R,p,2);

are valid calls to the function kine.

Return Value

Matrix or None (in this case Rot and pos are modified on output)

55

kine pd

Syntax

ReturnMatrix kine_pd(const int ref=0);

void kine_pd(Matrix & Rot, ColumnVector & pos,

ColumnVector & pos_dot, const int ref=0);

Description

The forward kinematic model is provided by implementing the following
recursion (similar to kine):

0Ri = 0Ri−1
i−1Ri (2.58)

0pi = 0pi−1 + 0Ri−1pi (2.59)

0ṗi = 0ṗi−1 + 0Riωi × 0Ri−1pi DH notation
0ṗi = 0ṗi−1 + 0Ri−1(ωi−1 × pi) modified DH notation

(2.60)

where

0T i =

[
0Ri

0pi
0 1

]
(2.61)

Return Value

Matrix or None (in this case Rot, pos pos dot are modified on output)

56

dTdqi

Syntax

void dTdqi(Matrix & dRot, ColumnVector & dp, const int i);

ReturnMatrix dTdqi(const int i);

Description

This function computes the partial derivatives:

∂0T n
∂qi

= 0T i−1Qi
i−1T n (2.62)

in standard notation and

∂0T n
∂qi

= 0T iQi
iT n (2.63)

in modified notation, with

Qi =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 for a revolute joint (2.64)

Qi =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 for a prismatic joint (2.65)

Return Value

Matrix or None (in this case dRot and dp are modified on output)

57

2.3.3 Dynamics

The robotics manipulator dynamic model is given by (see appendix A or [4])

τ = D(q)q̈ +C(q,q̇) +G(q) (2.66)

acceleration

Syntax

ReturnMatrix acceleration(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & tau);

ReturnMatrix acceleration(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & tau_cmd,

const ColumnVector & Fext,

const ColumnVector & Next)

Description

This function computes q̈ from q, q̇ and τ which is the forward dynamics
problem. Walker and Orin [11] presented methods to compute the inverse
dynamics. A simplified RNE version computing

τ = D(q)q̈ (2.67)

is implemented in the function torque novelocity. By evaluating this
equation n times, one can compute D(q) (the inertia function), use the
full RNE to compute C(q,q̇) +G(q) and then solve the equation :

q̈ = D−1(q) [τ −C(q,q̇)−G(q)] (2.68)

Return Value

ColumnVector

58

inertia

Syntax

ReturnMatrix inertia(const ColumnVector & q);

Description

This function computes the robot inertia matrix D(q). A simplified RNE
version computing

τ = D(q)q̈ (2.69)

is implemented in the function torque novelocity. By evaluating this
equation n times, one can compute D(q).

Return Value

Matrix

59

torque

Syntax

ReturnMatrix torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp);

ReturnMatrix torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp,

const ColumnVector & Fext,

const ColumnVector & Next);

Description

This function computes τ from q, q̇ and q̈ which is the inverse dynamics
problem. The recursive Newton-Euler (RNE) formulation is one of the most
computationally efficient algorithm [12, 13] used to solve this problem (see
appendix A). The second form allows the inclusion the contribution of a
load applied at the last link.

Return Value

ColumnVector

60

torque novelocity

Syntax

ReturnMatrix torque_novelocity(const ColumnVector & q,

const ColumnVector & qpp);

ReturnMatrix torque_novelocity(const ColumnVector & q,

const ColumnVector & qpp,

const ColumnVector & Fext,

const ColumnVector & Next);

Description

This function computes τ from q and q̈ when q̇ = 0 and gravity is set to
zero.

Return Value

ColumnVector

61

G and C

Syntax

ReturnMatrix G();

ReturnMatrix C();

Description

The function G() computes τ from the gravity effect, while C() computes τ
from the Coriolis and centrifugal effects.

Return Value

ColumnVector for G and C

62

2.3.4 Linearized dynamics

Murray and Neuman [13] have developed an efficient recursive linearized
Newton-Euler formulation that can be used to compute (see appendix A)

δτ = D(q)δq̈ + S1(q,q̇)δq̇ + S2(q,q̇, q̈)δq (2.70)

delta torque

Syntax

void delta_torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp,

const ColumnVector & dq,

const ColumnVector & dqp,

const ColumnVector & dqpp,

ColumnVector & torque,

ColumnVector & dtorque);

Description

This function computes

δτ = D(q)δq̈ + S1(q,q̇)δq̇ + S2(q,q̇, q̈)δq (2.71)

Return Value

None (torque and dtorque are modified on output)

63

dq torque

Syntax

void dq_torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp,

const ColumnVector & dq,

ColumnVector & torque,

ColumnVector & dtorque);

Description

This function computes

S2(q,q̇, q̈)δq (2.72)

Return Value

None (torque and dtorque are modified on output)

64

dqp torque

Syntax

void dqp_torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & dqp,

ColumnVector & torque,

ColumnVector & dtorque);

Description

This function computes

S1(q,q̇)δq̇ (2.73)

Return Value

None (torque and dtorque are modified on output)

65

dtau dq

Syntax

ReturnMatrix dtau_dq(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp);

Description

This function computes

∂τ

∂q
= S2(q,q̇, q̈) (2.74)

Return Value

Matrix

66

dtau dqp

Syntax

ReturnMatrix dtau_dqp(const ColumnVector & q,

const ColumnVector & qp);

Description

This function computes

∂τ

∂q̇
= S1(q,q̇) (2.75)

Return Value

Matrix

67

perturb robot

Syntax

void perturb_robot(Robot_basic & robot, const double f = 0.1);

Description

This function, which is not a member of any class, modifies randomly the
robot parameters. The parameter variation in percentage is described by f.

Return Value

None

68

2.4 The Spl Cubic class

Spl Cubic deals with parametric cubic splines [9].

Constructor

Syntax

Spl_cubic(){};

Spl_cubic(const Matrix & pts);

Spl_cubic(const Spl_cubic & x);

Spl_cubic & operator=(const Spl_cubic & x);

Description

Spl Cubic object constructor, copy constructor and equal operator.

Return Value

None

69

s, ds and dds

Syntax

short interpolating(const Real t, ColumnVector & s);

short first_derivative(const Real t, ColumnVector & ds);

short second_derivative(const Real t, ColumnVector & dds);

Description

These functions interpolate the spline at time t to sets the quaternion s, ds
and dds.

Return Value

Status, as a short int.

0 successful

NOT IN RANGE (regarding t)

BAD DATA

70

2.5 The Spl path class

Spl path uses three instances of the class Spl Cubic for path X, Y , Z inter-
polation.

Constructor

Syntax

Spl_path():Spl_cubic(){};

Spl_path(const string & filename);

Spl_path(const Matrix & x);

Spl_path(const Spl_path & x);

Spl_path & operator=(const Spl_path & x);

Description

Spl path object constructor, copy constructor and equal operator.

Return Value

None

71

p, dp, ddp

Syntax

short p(const Real time, ColumnVector & p);

short p_pdot(const Real time, ColumnVector & p, ColumnVector & pdot);

short p_pdot_pddot(const Real time, ColumnVector & p, ColumnVector & dp,

ColumnVector & ddp);

Description

These functions interpolate the spline at time t to sets the quaternion p
(position), dp (velocity) and ddp (acceleration).

Return Value

Status, as a short int.

0 successful

NOT IN RANGE (regarding t)

BAD DATA

72

2.6 The Spl Quaternion class

Spl Quaternion deals with parametric quaternions cubic splines.

Constructor

Syntax

Spl_Quaternion(){}

Spl_Quaternion(const string & filename);

Spl_Quaternion(const quat_map & quat);

Spl_Quaternion(const Spl_Quaternion & x);

Spl_Quaternion & operator=(const Spl_Quaternion & x);

Description

Spl Quaternion object constructor, copy constructor and equal operator.

Return Value

None

73

quat and quat w

Syntax

short quat(const Real t, Quaternion & q);

short quat_w(const Real t, Quaternion & q, ColumnVector & w);

Description

These functions interpolate the spline at time t to sets the quaternion q and
the angular velocity ω.

Return Value

Status, as a short int.

0 successful

NOT IN RANGE (regarding t)

74

2.7 The Trajectory Select class

This class deals with trajectory selection logic.

Constructor

Syntax

Trajectory_Select();

Trajectory_Select(const string & filename);

Trajectory_Select(const Trajectory_Select & x);

Trajectory_Select & operator=(const Trajectory_Select & x);

Description

Trajectory Select object constructor, copy constructor and equal operator.

Return Value

None

75

set trajectory

Syntax

void set_trajectory(const string & filename);

Description

This function reads the trajectory file (filename) and assign the spline data
in class Spl path or in class Spl Quaternion.

Return Value

None

76

2.8 The CLIK class

The CLICK class deals with closed-loop inverse kinematics algorithm based
on the unit quaternion [14].

Constructor

Syntax

Clik(){}

Clik(const Robot & robot_, const Matrix & Kp_, const Matrix & Ko_,

const Real eps_=0.04, const Real lambda_max_=0.04,

const Real dt=1.0);

Clik(const mRobot & mrobot_, const Matrix & Kp_, const Matrix & Ko_,

const Real eps_=0.04, const Real lambda_max_=0.04,

const Real dt=1.0);

Clik(const mRobot_min_para & mrobot_min_para_, const Matrix & Kp_,

const Matrix & Ko_, const Real eps_=0.04,

const Real lambda_max_=0.04, const Real dt=1.0);

Clik(const Clik & x);

Clik & operator=(const Clik & x);

Description

CLIK object constructor, copy constructor and equal operator.

Return Value

None

77

q qdot

Syntax

void q_qdot(const Quaternion & qd, const ColumnVector & pd,

const ColumnVector & pddot, const ColumnVector & wd,

ColumnVector & q, ColumnVector & qp);

Description

This function sets the desired orientation joint position q and the desired
joint velocity qp.

Return Value

None

78

2.9 The Proportional Derivative class

The Proportional Derivative class deals with the well known proportional
derivative position controller.

Constructor

Syntax

Proportional_Derivative(const short dof = 1);

Proportional_Derivative(const Robot_basic & robot, const DiagonalMatrix & Kp,

const DiagonalMatrix & Kd);

Proportional_Derivative(const Proportional_Derivative & x);

Description

Proportional Derivative object constructor, copy constructor and equal op-
erator.

Return Value

None

79

torque cmd

Syntax

ReturnMatrix torque_cmd(Robot_basic & robot, const ColumnVector & qd,

const ColumnVector & qpd);

Description

This function sets the output torque for a desired joint position vector, qd,
and a desired joint velocity vector, q̇d.

Return Value

Matrix

80

Kd, Kp

Syntax

short set_Kd(const DiagonalMatrix & Kd);

short set_Kp(const DiagonalMatrix & Kp);

Description

These functions sets the joint position error gain matrix, Kd, and the joint
velocity error gain matrix, Kp.

Return Value

Status, as a short int.

0 successful

WRONG SIZE (regarding the input vector)

81

2.10 The Computed torque method class

The Computed torque method class deals with the well known computed
torque method position controller [8].

Constructor

Syntax

Computed_torque_method();

Computed_torque_method(const Robot_basic & robot,

const DiagonalMatrix & Kd, const DiagonalMatrix & Kp);

Computed_torque_method(const Computed_torque_method & x);

Computed_torque_method & operator=(const Computed_torque_method & x);

Description

Computed torque method object constructor, copy constructor and equal op-
erator.

Return Value

None

82

torque cmd

Syntax

ReturnMatrix torque_cmd(Robot_basic & robot, const ColumnVector & qd,

const ColumnVector & qpd);

Description

This function sets the output torque for a desired joint position vector, qd,
and a desired joint velocity vector, q̇d.

Return Value

Matrix

83

Kd, Kp

Syntax

short set_Kp(const DiagonalMatrix & Kp);

short set_Kd(const DiagonalMatrix & Kd);

Description

These functions sets the joint position error gain matrix, Kp, and the joint
velocity error gain matrix, Kd.

Return Value

Status, as a short int.

0 successful

WRONG SIZE (regarding the input vector)

84

2.11 The Resolve acc class

The Resolve acc class deals with the resolve rate acceleration controller [15].

Constructor

Syntax

Resolved_acc();

Resolved_acc(const Robot_basic & robot,

const double Kvp, const double Kpp,

const double Kvo, const double Kpo);

Resolved_acc(const Resolved_acc & x);

Resolved_acc & operator=(const Resolved_acc & x);

Description

Resolve acc object constructor, copy constructor and equal operator.

Return Value

None

85

torque cmd

Syntax

ReturnMatrix torque_cmd(Robot_basic & robot, const ColumnVector & pdpp,

const ColumnVector & pdp, const ColumnVector & pd,

const ColumnVector & wdp, const ColumnVector & wd,

const Quaternion & qd, const short link_pc,

const Real dt);

Description

This function sets the output torque for the following desired end effector
vector: acceleration, velocity, position, angular acceleration, angular veloc-
ity and angular position.

Return Value

Matrix

86

Kpp, Kvp, Kpo, Kvo

Syntax

void set_Kpp(const double Kpp);

void set_Kvp(const double Kvp);

void set_Kpo(const double Kpo);

void set_Kvo(const double Kvo);

Description

These functions sets the end effector position error gain, Kpp, the velocity
error gain, Kvp, the orientation error gain Kpo, and the orientation angular
rate gain, Kvo.

Return Value

None

87

2.12 The Impedance class

The Impedance class deals with the impedance controller [16]. This class
should be use with the class Resolve acc. Resolve acc will make sure the
end effector follow the compliant trajectory generated by Impedance. The
end effector impedance is defined in terms of its translational and rotational
part [16].

Constructor

Syntax

Impedance();

Impedance(const Robot_basic & robot, const DiagonalMatrix & Mp,

const DiagonalMatrix & Dp, const DiagonalMatrix & Kp,

const Matrix & Km, const DiagonalMatrix & Mo,

const DiagonalMatrix & Do, const DiagonalMatrix & Ko);

Impedance(const Impedance & x);

Impedance & operator=(const Impedance & x);

Description

Impedance object constructor, copy constructor and equal operator.

Return Value

None

88

control

Syntax

short control(const ColumnVector & pdpp, const ColumnVector & pdp,

const ColumnVector & pd, const ColumnVector & wdp,

const ColumnVector & wd, const Quaternion & qd,

const ColumnVector & f, const ColumnVector & n,

const Real dt);

Description

This function generate the compliant trajectory for a desired trajectory.

Return Value

Status, as a short int.

0 successful

WRONG SIZE (regarding the input vector)

89

Mp, Dp, Kp, Mo, Do, Ko

Syntax

short set_Mp(const DiagonalMatrix & Mp);

short set_Mp(Real MP_i, const short i);

short set_Dp(const DiagonalMatrix & Dp);

short set_Dp(Real Dp_i, const short i);

short set_Kp(const DiagonalMatrix & Kp);

short set_Kp(Real Kp_i, const short i);

short set_Mo(const DiagonalMatrix & Mo);

short set_Mo(Real Mo_i, const short i);

short set_Do(const DiagonalMatrix & Do);

short set_Do(Real Do_i, const short i);

short set_Ko(const DiagonalMatrix & Ko);

short set_Ko(Real Ko_i, const short i);

Description

These functions sets the translational and rotational impedance parameters.

Return Value

Status, as a short int.

0 successful

WRONG SIZE (regarding the input vector)

90

2.13 The Control Select class

The Control Select class deals with the controllers selection logic. It can be
use to select any controllers mentioned above by reading the input file.

Constructor

Syntax

Control_Select();

Control_Select(const string & filename);

Control_Select(const Control_Select & x);

Control_Select & operator=(const Control_Select & x);

Description

Control Select object constructor, copy constructor and equal operator.

Return Value

None

91

get dof

Syntax

int get_dof();

Description

This function return the degree of freedom used in the selection.

Return Value

int

92

set control

Syntax

void set_control(const string & filename);

Description

This function set the active controller.

Return Value

None

93

2.14 The Stewart class

Coming soon ... (based on [17]).

94

2.15 The IO matrix file class

Read and write functions are provided by the class IO matrix file. It is
possible to read or write data at every iteration of the simulation using an
instance of this class.

Constructor

Syntax

IO_matrix_file(const string & filename);

Description

IO matrix file object constructor.

Return Value

None

95

write

Syntax

short write(const vector<Matrix> & data);

short write(const vector<Matrix> & data, const vector<string> & data_title);

Description

This member function appends data to a file (specified by the constructor,
and opened by write() when first called). data title is used to write a
header description at the beginning of the file. If it is not specified, a
default description datai, i = 1, 2, · · · , n will be added. The header contains
the number of iterations, the number of vectors and the data parameters,
as follows:

nb iterations 1269
nb vector 2
nb rows 1 nb cols 1 time (s)
nb rows 6 nb cols 1 q(i) (rad)
———————————

Return Value

A short integer return the status:

0 successful,

IO COULD NOT OPEN FILE

IO DATA EMPTY

96

read

Syntax

short read(const vector<Matrix> & data);

short read(const vector<Matrix> & data, const vector<string> & data_title);

short read_all(vector<Matrix> & data, vector<string> & data_title);

Description

These member functions read data from a file (specified by the constructor,
and opened when first called). read() reads the values corresponding to
only one iteration, while read all() reads the entire file at once.
These member functions are meant to read a file that was written using
write().

Return Value

Status, as a short int.

0 successful

IO DATA EMPTY

IO COULD NOT OPEN FILE

97

2.16 Graphics

Graphics are provided through calls to the gnuplot 1 software. Instances of
the class Plot2d and Plot file are used to generate the data and command
files required by the call to gnuplot. A plot can be generated using the
set plot2d function.

1 gnuplot is freely available from the following location: http://www.gnuplot.info/

98

http://www.gnuplot.info/

Plot2d class

Constructor

Syntax

Plot2d(void);

Description

Upon initialization, a Plot2d object contain an empty graph. Data, title,
label and other goodies can be added using the following member functions:

• addcommand;

• addcurve;

• dump;

• gnuplot;

• settitle;

• setxlabel;

• setylabel.

Return Value

None

99

addcommand

Syntax

void addcommand(const char * gcom);

Description

This function adds the command specified by the string gcom to the gnuplot
command file. Ex: mygraph.addcommand("set grid").
Note: see the gnuplot documentation for the list of commands.

Return Value

None

100

addcurve

Syntax

void addcurve(const Matrix & data,

const char * label = "",

int type = LINES);

Description

This function add the curves specified by the n × 2 matrix data to the
plot using the string label for the legend and type for the curve line type.
Defined line types are:

• LINES;

• POINTS;

• LINESPOINTS;

• IMPULSES;

• DOTS;

• STEPS;

• BOXES.

See the gnuplot documentation for the description of these line types.

Return Value

None

101

dump

Syntax

void dump(void);

Description

This function dumps the current content of the object to stdout.

Return Value

None

102

gnuplot

Syntax

void gnuplot(void);

Description

This function calls gnuplot with the current content of the object.

Return Value

None

103

settitle

Syntax

void settitle(const char * t);

Description

This function sets the title of the graph to the string t.

Return Value

None

104

setxlabel

Syntax

void setxlabel(const char * t);

Description

This function sets the axis X label of the graph to the string t.

Return Value

None

105

setylabel

Syntax

void setylabel(const char * t);

Description

This function sets the axis Y label of the graph to the string t.

Return Value

None

106

Plot file class

An instance of this class allows the creation of graphics from a data file.
This file has to be created with an instance of the class IO matrix file.

Constructor

Syntax

Plot_file(const string & filename);

Description

Plot file object constructor.

Return Value

None

107

graph

Syntax

short graph(const string & title_graph, const string & label, const short x,

const short y, const short x_start, const short y_start,

const short y_end);

Description

Create a graphic from a data file (specified by constructor). title graph

and label are used to provide the graphic title and label names in the
legend. x refers to the index in the “vector<Matrix> & data” (in class
IO Matrix file) corresponding to the x axis (ex: time), while y refers to
the index in the “vector<Matrix> & data” corresponding to the y axis
(ex: joints positions). x start, y start and y end specify which rows of
data to use.

Return Value

Status, as a short int.

0 successful

X Y DATA NO MATCH

PROBLEM FILE READING

108

set plot2d

Syntax

void set_plot2d(const char *title_graph, const char *x_axis_title,

const char *y_axis_title, const char *label, int type,

const Matrix &xdata, const Matrix &ydata,

int start_y, int end_y);

void set_plot2d(const char *title_graph, const char *x_axis_title,

const char *y_axis_title, const std::vector<char *> label,

int type, const Matrix &xdata, const Matrix &ydata,

const std::vector<int> & data_select);

Description

This function generates a plot using a range (start y, end y) or a selection
of columns (data select) of the ydtata while setting the titles and labels.

Return Value

None

109

2.17 Config class

Config

Syntax

Config(const string & filename, const bool bPrintErrorMessages = true);

Config(const Config & x);

Config & operator=(const Config & x);

Description

This class provides a function to read a configuration.

Return Value

None

110

Reading and writing

Syntax

short read_conf();

short write_conf(const string filename, const string file_title,

const int space_between_column);

Description

The member function read conf reads a configuration file (specified by con-
structor). The member function write conf writes the configuration data in
a file. A configuration file is divided in sections, which contain different pa-
rameters with their values. A section starts by [section name] and contains
one or more parameters an their values: parameter name: value The “:” is
mandatory between the name of the parameter and it’s value. Lines begin-
ning with a # and white/empty lines are ignored . The following example
contains one section named PUMA560 mDH.

[PUMA560_mDH]

DH: 0

Fix: 1

MinPara: 0

dof: 6

Motor: 0

Return Value

Status, as a short int.

0 successful

CAN NOT OPEN FILE

111

select

Syntax

short select(const string section, const string parameter,

string & value) const;

short select(const string section, const string parameter,

bool & value) const;

short select(const string section, const string parameter,

short & value) const;

short select(const string section, const string parameter,

int & value) const;

short select(const string section, const string parameter,

double & value) const;

short select(const string section, const string parameter,

float & value) const;

Description

These member functions are use to assign to the variable value the value
of the parameter parameter from section section section.

Return Value

Status, as a short int.

0 successful

SECTION OR PARAMETER DOES NOT EXIST

112

add

Syntax

void add(const string section, const string parameter,

const string value);

void add(const string section, const string parameter,

const bool value);

void add(const string section, const string parameter,

const short value);

void add(const string section, const string parameter,

const int value);

void add(const string section, const string parameter,

const double value);

void add(const string section, const string parameter,

const float value);

Description

These member functions are use to add data into the data file structure.
They will create the section and the parameter if it does not already exist.

Return Value

None

113

2.18 Miscellaneous

odeint

Syntax

void odeint(ReturnMatrix (*xdot)(Real time, const Matrix & xin),

Matrix & xo,

Real to,

Real tf,

Real eps,

Real h1,

Real hmin,

int & nok,

int & nbad,

RowVector & tout,

Matrix & xout,

Real dtsav);

Description

This function performs the numerical integration of

ẋ = f(x(t), t) (2.76)

using an adaptive step size based on 4th order Runge-Kutta scheme. It
carries out the integration of xdot with the initial conditions given by xo,
from time to to tf with accuracy eps saving the results at dtsav increments.
After the function call, tout is set as[

t0 t1 · · · tnsteps
]

(2.77)

xout as[
x0 x1 · · · xnsteps

]
(2.78)

xo as xnsteps, nok and nbad to the number of good and bad steps taken.
The function odeint is adapted from [18].

Return Value

None (xo, tout and xout are modified on output)

114

Runge Kutta4

Syntax

void Runge_Kutta4(ReturnMatrix (*xdot)(Real time, const Matrix & xin),

const Matrix & xo,

Real to,

Real tf,

int nsteps,

RowVector & tout,

Matrix & xout);

Description

This function performs the numerical integration of

ẋ = f(x(t), t) (2.79)

using a fixed step size 4th order Runge-Kutta scheme. It carries out the
integration of xdot with the initial conditions given by xo, from time to to
tf with nsteps. After the function call, tout is set as[

t0 t1 · · · tnsteps
]

(2.80)

and xout as[
x0 x1 · · · xnsteps

]
(2.81)

Return Value

None (tout and xout are modified on output)

115

Integ Trap

Syntax

ReturnMatrix Integ_Trap(const ColumnVector & present, ColumnVector & past,

Real dt);

Description

This function performs the trapezoidal integration of the vector past to
vector present over dt.

Return Value

Matrix

116

pinv

Syntax

ReturnMatrix pinv(const Matrix & M);

Description

This function computes the pseudo inverse of the matrix M using SVD. If
A = U∗QV is a singular value decomposition of A, then A† = V ∗Q†U where
X∗ is the conjugate transpose of X and

Q† =


1/σ1

1/σ2
. . .

0


where the 1/σi are replaced by 0 when 1/σi < tol.

Return Value

Matrix

117

vec dot prod

Syntax

Real vec_dot_prod(const ColumnVector & x, const ColumnVector & y);

Description

This function performs the vector dot product on x and y.

Return Value

ColumnVector

118

x prod matrix

Syntax

ReturnMatrix x_prod_matrix(const ColumnVector & x);

Description

This function computes the cross product matrix S(x) of x such that S(x)y =
x× y.

Return Value

Matrix

119

2.19 Summary of functions

Table 2.2: Homogeneous transforms

Homogeneous Transforms

eulzxz transform of Euler angles

ieulzxz Euler angles of a transform

irotk rotation around a unit vector of a transform

irpy roll-pitch-yaw angles of a transform

rotd transform of a rotation around a line segment

rotk transform of a rotation around a unit vector

rpy transform of roll-pitch-yaw angles

rotx transform of a rotation around X axis

roty transform of a rotation around Y axis

rotz transform of a rotation around Z axis

trans transform of a translation

120

Table 2.3: Quaternion class member functions

Quaternions

+, -, *, /, = operators on quaternions

conjugate, i conjugate (or inverse) of a quaternion

exp, Log, power exponential, logarithm and power of a quaternion

dot prod dot product of a quaternion

dot, E quaternion time derivative

unit make a quaternion a unit quaternion

norm, norm sqr compute the norm and the square norm of a quaternion

s, v returns the scalar and the vector of a quaternion

set s, set v assign values to the scalar and vector part of a quaternion

R, T returns the equivalent rotation matrix (3× 3 or 4× 4)

Table 2.4: Quaternion non member functions

Functions

Omega returns angular velocity

Slerp Spherical Linear Interpolation

Slerp prime Spherical Linear Interpolation derivative

Squad Spherical Cubic Interpolation

Squad prime Spherical Cubic Interpolation derivative

Table 2.5: Spl Quaternion class member function

Spl Quaternion

quat interpolate the spline at time t to sets the quaternion q.

quat w interpolate the spline at time t to sets the quaternion q and angular velocity ω.

121

Table 2.6: Spl Cubic class member function

Spl Cubic

interpolating interpolate the spline at time t.

first derivative interpolate the spline first derivative at time t.

second derivative interpolate the spline second derivative at time t.

Table 2.7: Spl path class member function

Spl path

p interpolate the spline at time t to sets the position.

p pdot interpolate the spline at time t to sets position and velocity.

p pdot pddot interpolate the spline at time t to sets position, velocity and acceleration.

Table 2.8: CLIK class member function

CLIK

q qdot sets the desired joint position and joint velocity

Table 2.9: Computed torque method class member function

Computed torque method

torque cmd sets the output torque

set Kd sets the derivative error gain

set Kp sets the position error gain

122

Table 2.10: Resolve acc class member function

Resolve acc

torque cmd sets the output torque

set Kvp sets the translational velocity error gain

set Kpp sets the translational position error gain

set Kvo sets the rotational velocity error gain

set Kpo sets the rotational position error gain

Table 2.11: Impedance class member function

Impedance

control sets the compliant trajectory

set Mp sets the translational impedance inertia matrix

set Dp sets the translational impedance damping matrix

set Kp sets the translational impedance stiffness matrix

set Mo sets the rotational impedance inertia matrix

set Do sets the rotational impedance damping matrix

set Ko sets the rotational impedance stiffness matrix

Table 2.12: IO matrix file class member functions

IO matrix file

write create and write data to a file

read read data from a file

read all read entire data file at once

123

Table 2.13: Plot2d class member functions

Plot2d

addcommand add a gnuplot command the 2d graph

addcurve add a curve to the 2d graph

dump dump the content of the graph to stdout

gnuplot plot the graph through a call to gnuplot

settitle sets graph title

setxlabel sets axis X label

setylabel sets axis Y label

set plot2d “wrapper” function for Plot2d

Table 2.14: Plot file class member functions

Plot file

graph create a graphics from a data file

Table 2.15: Config class member functions

Config

read conf read configuration file

select assign the value of parameter from a section

add specify the value of parameter for a section

124

Table 2.16: Robot (and mRobot) class member functions

Joint Variables

get q get the robot joint variables position

get qp get the robot joint variables velocity

get qpp get the robot joint variables acceleration

set q set the robot joint variables position

set qp set the robot joint variables velocity

set qpp set the robot joint variables acceleration

Robot Kinematics

inv kin inverse kinematics
inv kin rhino Rhino inverse kinematics
inv kin puma Puma inverse kinematics

jacobian robot Jacobian
jacobian dot robot Jacobian derivative
jacobian DLS inv robot Jacobian DLS inverse

kine, kine pd forward kinematics

dTdqi partial derivative of forward kinematics

Robot Dynamics

acceleration forward dynamics

inertia robot inertia matrix

torque inverse dynamics

torque novelocity inverse dynamics without velocity and gravity

G gravity effects

C Coriolis and centrifugal effects

Robot Linearized Dynamics

delta torque δτ = D(q)δq̈ + S1(q,q̇)δq̇ + S2(q,q̇, q̈)δq

dq torque S2(q,q̇, q̈)δq

dqp torque S1(q,q̇)δq̇

dtau dq ∂τ
∂q = S2(q,q̇, q̈)

dtau dqp ∂τ
∂q̇ = S1(q,q̇)

125

Table 2.17: Miscellaneous

Miscellaneous

odeint adaptive step size Runge-Kutta integrator

Runge Kutta4 fixed step size 4th order Runge-Kutta integrator

Integ Trap trapezoidal integration

pinv matrix pseudo inverse

vec dot prod vector dot product

vec x prod vector cross product

x prod matrix cross product matrix

perturb robot perturb robot parameters

126

Chapter 3

Reporting bugs,
contributions and comments

I intend to support this library. By this, I mean that bugs will be fixed as
fast as time allows me and that new functionalities will be introduced in
future releases. If you find a bug or think some part of the documentation
could be improved, let me know and I will try to include the corrections
in the next release. Comments regarding the documentation will not be
treated as fast as bug reports. I will not, however, help users with problems
related to assignments and homework. You can use your Web browser to
send comments or bug report with the URL:

http://sourceforge.net/projects/roboop/.

3.1 Reporting bugs

When reporting bugs, please send the following information (see the file
bugs.txt):

VERSION OF THE PACKAGE (see the readme.txt file):

OS:

COMPILER:

DESCRIPTION OF THE BUG:

SAMPLE CODE THAT MAKE THE BUG APPARENT:

127

http://sourceforge.net/projects/roboop/

or use the URL: http://sourceforge.net/projects/roboop/.

3.2 Making a contribution to the package

If you have written some code you think might be useful for other users
of the package, I will be happy to integrate it in future releases. Makefiles
for compilers not included in this distribution would be greatly appreciated.
Contact me for more details: richard.gourdeau@polymtl.ca.

3.3 Citing the package

If you are using the ROBOOP package, please let me know. If you want
to cite this package in some of your work, please use [19] or the following
BibTEX entry:

@ARTICLE{Gourdeau97,

author = {Richard Gourdeau},

month = sep,

year = 1997,

title = {Object Oriented Programming for Robotic

Manipulators Simulation},

journal = {IEEE Robotics and Automation Magazine},

volume = 4,

number = 3,

pages = {21--29}

}

128

http://sourceforge.net/projects/roboop/
mailto:richard.gourdeau@polymtl.ca

Chapter 4

Credits and
acknowledgments

I would like to thank Robert Davies for making his NEWMAT11 library
available.

The hardware and software used to develop the initial releases of this
package were funded through NSERC grants OGP0138478 and EQP0172766.

I would like to thank Etienne Lachance for his contributions since the
1.13 release and Samuel Belanger for the initial version of the Stewart class.

129

Chapter 5

Future developments

In future releases, we hope to include the following:

• functions for basic control laws (sliding modes, etc);

• make files for other compilers.

130

Bibliography

[1] Jack C. K. Chou, “Quaternion kinematic and dynamic differential equa-
tions”, IEEE Trans. of Robotics and Automation, vol. 1, no. 8, pp.
53–64, Feb. 1992.

[2] M. Lillholm E.B. Dam, M. Koch and, “Quaternions, interpolation and
animation”, Tech. Rep. DIKU-TR-98/5, University of Copenhagen,
July 1998.

[3] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower pair
mechanisms based on matrices”, ASME Jour. of Applied Mechanics,
pp. 215–221, June 1955.

[4] J. J. Craig, Introduction to Robotics: Mechanics and Control, Addison-
Wesley Publising Company, 2nd edition, 1989.

[5] Bruce Eckel, C++ inside & out, Osborne, McGraw-Hill, 1993.

[6] B. Gorla and M. Renaud, Modèles des robots manipulateurs, application
à leur commande, Cepadues-éditions, Toulouse, mai 1984.

[7] J. J. Uicker, “Dynamic force analysis of spatial linkages”, ASME Jour.
of Applied Mechanics, vol. 34, pp. 418–424, June 1967.

[8] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing,
Vision, and Intelligence, McGraw-Hill, New York, 1987.

[9] Jorge Angeles, Fundamentals of Robotic Mechanical Systems: The-
ory, Methods and Algorithms, Mechanical Engineering Series. Springer-
Verlag, 1997.

[10] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped
least-squares inverse kinematics with experiments on an industrial robot
manipulator”, IEEE Trans. on Control Systems Technology, vol. 2, no.
2, pp. 123–134, June 1994.

131

[11] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation
of robotic mechanisms”, ASME Jour. of Dynamic Systems, Measure-
ment, and Control, vol. 104, pp. 205–211, 1982.

[12] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computa-
tional scheme for mechanical manipulators”, ASME Jour. of Dynamic
Systems, Measurement, and Control, vol. 102, pp. 69–76, June 1980.

[13] J. J. Murray and C. P. Neuman, “Linearization and sensitivity models
of the Newton-Euler dynamic robot model”, ASME Jour. of Dynamic
Systems, Measurement, and Control, vol. 108, pp. 272–276, Sept. 1986.

[14] S. Chiaverini and B. Siciliano, “The unit quaternion: A useful tool for
inverse kinematics of robot manipulators”, Systems Analysis, Modeling
and Simulation, vol. 35, pp. 45–60, 1999.

[15] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Resolved-
acceleration control of robot manipulators: A critical review with ex-
periments”, Robotica, vol. 16, pp. 565–573, 1998.

[16] F. Caccavale and B. Siciliano, “Six-dof impedance control based on
angle/axis representations”, IEEE Trans. of Robotics and Automation,
vol. 15, pp. 289–300, 1999.

[17] K. Harib and K. Srinivasan, “Kinematic and dynamic analysis of Stew-
art platform-based machine tool structures”, Robotica, vol. 21, pp.
541–554, 2003.

[18] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling, Numerical Recipes in C, The Art of Scientific Computing,
Cambridge University Press, 1988.

[19] Richard Gourdeau, “Object oriented programming for robotic manip-
ulators simulation”, IEEE Robotics and Automation Magazine, vol. 4,
no. 3, pp. 21–29, Sept. 1997.

132

Appendix A

Recursive Newton-Euler
algorithms, DH notation

In order to apply the RNE as presented in [13], let us define the following
variables (referenced in the ith coordinate frame if applicable):

• σi is the joint type; σi = 1 for a revolute joint and σi = 0 for a
prismatic joint;

• pi =
[
ai di sinαi di cosαi

]T
is the position of the ith with respect

to the i− 1th frame;

• z0 =
[

0 0 1
]T

A.1 Recursive Newton-Euler formulation

• Forward Iterations for i = 1, 2, . . . , n.

Initialize: ω0 = ω̇0 = 0 and v̇0 = −g.

ωi = RT
i [ωi−1 + σiz0θ̇i] (A.1)

ω̇i = RT
i {ω̇i−1 + σi[z0θ̈i + ωi−1 × (z0θ̇i)]} (A.2)

v̇i = RT
i {v̇i−1 + (1− σi)[z0d̈i + 2ωi−1 × (z0ḋi)]}

+ω̇i × pi + ωi × (ωi × pi) (A.3)

• Backward Iterations for i = n, n− 1, . . . , 1.

133

Initialize: fn+1 = nn+1 = 0.

v̇ci = v̇i + ω̇i × ri + ωi × (ωi × ri) (A.4)

F i = miv̇ci (A.5)

N i = Iciω̇i + ωi × (Iciωi) (A.6)

f i = Ri+1[f i+1] + F i (A.7)

ni = Ri+1[ni+1] + pi × f i +N i + ri × F i (A.8)

τi = σin
T
i (RT

i z0) + (1− σi)fTi (RT
i z0) (A.9)

A.2 Recursive linearized Newton-Euler formula-
tion

With

pdi =
∂pi
∂di

=
[

0 sinαi cosαi
]T

(A.10)

Q =

 0 −1 0
1 0 0
0 0 0

 (A.11)

one can use the following

• Forward Iterations for i = 1, 2, . . . , n.

Initialize: δω0 = δω̇0 = δv̇0 = 0.

δωi = RT
i {δωi−1 + σi[z0δθ̇i −Q(ωi−1 + θ̇i)δθi]} (A.12)

δω̇i = RT
i {δω̇i−1 + σi[z0δθ̈i + δωi−1 × (z0θ̇i) + ωi−1 × (z0δθ̇i)]

−σiQ[ωi−1 + z0θ̈i + ωi−1 × (z0θ̇i)]δθi} (A.13)

δv̇i = RT
i {δv̇i−1 − σiQv̇i−1δθi

+(1− σi)[z0δd̈i + 2δωi−1 × (z0ḋi) + 2ωi−1 × (z0δḋi)]}
+δω̇i × pi + δωi × (ωi × pi) + ωi × (δωi × pi)
+(1− σi)(ω̇i × pdi + ωi × (ωi × pdi))δdi (A.14)

• Backward Iterations for i = n, n− 1, . . . , 1.

Initialize: δfn+1 = δnn+1 = 0.

δv̇ci = δv̇i + δω̇i × ri + δωi × (ωi × ri) + ωi × (δωi × ri)(A.15)

134

δF i = miδv̇ci (A.16)

δN i = Iciδω̇i + δωi × (Iciωi) + ωi × (Iciδωi) (A.17)

δf i = Ri+1[δf i+1] + δF i + σi+1QRi+1[f i+1]δθi+1 (A.18)

δni = Ri+1[δni+1] + δN i + pi × δf i + ri × δF i

+(1− σi)(pdi × f i)δdi + σi+1QRi+1[ni+1]δθi+1(A.19)

δτi = σi[δn
T
i (RT

i z0)− nTi (RT
i Qz0)δθi]

+(1− σi)[δfTi (RT
i z0)] (A.20)

135

Appendix B

Recursive Newton-Euler
algorithms, modified DH
notation

In order to apply the RNE, let us define the following variables (referenced
in the ith coordinate frame if applicable):

• σi is the joint type; σi = 1 for a revolute joint and σi = 0 for a
prismatic joint;

• pi =
[
ai−1 −disinαi−1 dicosαi−1

]T
is the position of the ith with

respect to the i− 1th frame;

• z0 =
[

0 0 1
]T

B.1 Recursive Newton-Euler formulation

• Forward Iterations for i = 1, 2, . . . , n.

Initialize: ω0 = ω̇0 = 0 and v̇0 = −g.

ωi = RT
i ωi−1 + σiz0θ̇i (B.1)

ω̇i = RT
i ω̇i−1 + σiR

T
i ωi−1 × z0θ̇i + σiz0θ̈i (B.2)

v̇i = RT
i (ω̇i−1 × pi + ωi−1 × (ωi−1 × pi) + v̇i−1) (B.3)

+(1 − σi)(2ωi × z0ḋi + z0d̈i)

136

• Backward Iterations for i = n, n− 1, . . . , 1.

Initialize: fn+1 = nn+1 = 0.

v̇ci = ω̇i × ri + ωi × (ωi × ri) + v̇i (B.4)

F i = miv̇ci (B.5)

N i = Iciω̈i + ωi × Iciωi (B.6)

f i = Ri+1f i+1 + F i (B.7)

ni = N i +Ri+1ni+1 + ri × F i + pi+1 ×Ri+1f i+1 (B.8)

τi = σiniz) + (1− σi)fTi z0 (B.9)

B.2 Recursive linearized Newton-Euler formula-
tion

With

pdi =
∂pi
∂di

=
[

0 − sinαi−1 cosαi−1
]T

(B.10)

Q =

 0 −1 0
1 0 0
0 0 0

 (B.11)

one can use the following

• Forward Iterations for i = 1, 2, . . . , n.

Initialize: δω0 = δω̇0 = δv̇0 = 0.

δωi = RT
i δωi−1 + σi(z0δθ̇i − QRT

i ωiδθi) (B.12)

δω̇i = RT
i δẇi−1 + σi[R

T
i δωi−1 × z0θ̇i (B.13)

+RT
i ωi−1 × z0δθ̇i + z0θ̈i

−(QRT
i ω̇i−1 +QRT

i ωi−1 × ωz0θ̇i)δθi]
δv̇i = RT

i

(
δω̇i−1 × pi + δωi−1 × (ωi−1 × pi) (B.14)

+ωi−1 × (δωi−1 × pi) + δv̇i
)

+(1− σi)
(
2δωi × z0ḋi + 2ωi × z0δḋi + z0δd̈i

)
−σiQRT

i

(
ω̇i−1 × pi + ωi−1 × (wi−1 × pi) + v̇i

)
δθi

+(1− σi)RT
i

(
ω̇i−1 × pdi + ωi−1 × (ωi−1 × pdi)

)
δdi

137

• Backward Iterations for i = n, n− 1, . . . , 1.

Initialize: δfn+1 = δnn+1 = 0.

δv̇ci = δv̇i + δω̇i × ri + δωi × (ωi × ri) (B.15)

+ωi × (δωi × ri)
δF i = miδv̇ci (B.16)

δN i = Iciδω̇i + δωi × (Iciωi) + ωi × (Iciδωi) (B.17)

δf i = Ri+1δf i+1 + δF i + σi+1Ri+1Qf i+1δθi+1 (B.18)

δni = δN i +Ri+1δni+1 + ri × δF i (B.19)

+pi+1 ×Ri+1δf i+1

+σi+1

(
Ri+1Qni+1 + pi+1 ×Ri+1Qf i+1

)
δθi+1

+(1− σi+1)pdi+1pdi+1 ×Ri+1f i+1δdi+1

δτ i = σδnTi z0 + (1− σi)δfTi z0 (B.20)

138

Appendix C

GNU Lesser General Public
License

Content of the file GNUlgpl.txt.

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts as the
successor of the GNU Library Public License, version 2, hence the version
number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some spe-
cially designated software packages—typically libraries—of the Free Soft-
ware Foundation and other authors who decide to use it. You can use it
too, but we suggest you first think carefully about whether this license or
the ordinary General Public License is the better strategy to use in any
particular case, based on the explanations below.

139

When we speak of free software, we are referring to freedom of use, not
price. Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for this service
if you wish); that you receive source code or can get it if you want it; that
you can change the software and use pieces of it in new free programs; and
that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid dis-
tributors to deny you these rights or to ask you to surrender these rights.
These restrictions translate to certain responsibilities for you if you dis-
tribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or
for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you
link other code with the library, you must provide complete object files to
the recipients, so that they can relink them with the library after making
changes to the library and recompiling it. And you must show them these
terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal permission
to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is
no warranty for the free library. Also, if the library is modified by someone
else and passed on, the recipients should know that what they have is not the
original version, so that the original author’s reputation will not be affected
by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any
free program. We wish to make sure that a company cannot effectively
restrict the users of a free program by obtaining a restrictive license from
a patent holder. Therefore, we insist that any patent license obtained for a
version of the library must be consistent with the full freedom of use specified
in this license.

Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License. This license, the GNU Lesser General Public
License, applies to certain designated libraries, and is quite different from
the ordinary General Public License. We use this license for certain libraries
in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a
shared library, the combination of the two is legally speaking a combined
work, a derivative of the original library. The ordinary General Public Li-
cense therefore permits such linking only if the entire combination fits its

140

criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library.

We call this license the ”Lesser” General Public License because it does
Less to protect the user’s freedom than the ordinary General Public License.
It also provides other free software developers Less of an advantage over
competing non-free programs. These disadvantages are the reason we use
the ordinary General Public License for many libraries. However, the Lesser
license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage
the widest possible use of a certain library, so that it becomes a de-facto
standard. To achieve this, non-free programs must be allowed to use the
library. A more frequent case is that a free library does the same job as
widely used non-free libraries. In this case, there is little to gain by limiting
the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software. For
example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, as well as its
variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the
users’ freedom, it does ensure that the user of a program that is linked with
the Library has the freedom and the wherewithal to run that program using
a modified version of the Library.

The precise terms and conditions for copying, distribution and modifi-
cation follow. Pay close attention to the difference between a ”work based
on the library” and a ”work that uses the library”. The former contains
code derived from the library, whereas the latter must be combined with
the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CON-
DITIONS FOR COPYING, DISTRIBUTION AND MODIFICA-
TION

0. This License Agreement applies to any software library or other program
which contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Lesser General
Public License (also called ”this License”). Each licensee is addressed as
”you”.

A ”library” means a collection of software functions and/or data prepared so
as to be conveniently linked with application programs (which use some of

141

those functions and data) to form executables.

The ”Library”, below, refers to any such software library or work which
has been distributed under these terms. A ”work based on the Library”
means either the Library or any derivative work under copyright law: that
is to say, a work containing the Library or a portion of it, either verbatim
or with modifications and/or translated straightforwardly into another lan-
guage. (Hereinafter, translation is included without limitation in the term
”modification”.)

”Source code” for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running a program
using the Library is not restricted, and output from such a program is covered
only if its contents constitute a work based on the Library (independent of
the use of the Library in a tool for writing it). Whether that is true depends
on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and dis-
claimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and distribute a copy of this License along
with the Library.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it,
thus forming a work based on the Library, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating
that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all
third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of
data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then you
must make a good faith effort to ensure that, in the event an application
does not supply such function or table, the facility still operates, and
performs whatever part of its purpose remains meaningful.

142

(For example, a function in a library to compute square roots has a
purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied func-
tion or table used by this function must be optional: if the application
does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Library, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Library, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with
the Library (or with a work based on the Library) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must
alter all the notices that refer to this License, so that they refer to the ordinary
GNU General Public License, version 2, instead of to this License. (If a
newer version than version 2 of the ordinary GNU General Public License
has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies
and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, un-
der Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you accompany it with the complete correspond-
ing machine-readable source code, which must be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software inter-
change.

If distribution of object code is made by offering access to copy from a des-
ignated place, then offering equivalent access to copy the source code from
the same place satisfies the requirement to distribute the source code, even

143

though third parties are not compelled to copy the source along with the
object code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is
called a ”work that uses the Library”. Such a work, in isolation, is not a
derivative work of the Library, and therefore falls outside the scope of this
License.

However, linking a ”work that uses the Library” with the Library creates an
executable that is a derivative of the Library (because it contains portions of
the Library), rather than a ”work that uses the library”. The executable is
therefore covered by this License. Section 6 states terms for distribution of
such executables.

When a ”work that uses the Library” uses material from a header file that
is part of the Library, the object code for the work may be a derivative work
of the Library even though the source code is not. Whether this is true is
especially significant if the work can be linked without the Library, or if the
work is itself a library. The threshold for this to be true is not precisely
defined by law.

If such an object file uses only numerical parameters, data structure layouts
and accessors, and small macros and small inline functions (ten lines or less
in length), then the use of the object file is unrestricted, regardless of whether
it is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute
the object code for the work under the terms of Section 6. Any executables
containing that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a ”work
that uses the Library” with the Library to produce a work containing portions
of the Library, and distribute that work under terms of your choice, provided
that the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library
is used in it and that the Library and its use are covered by this License.
You must supply a copy of this License. If the work during execution dis-
plays copyright notices, you must include the copyright notice for the Library
among them, as well as a reference directing the user to the copy of this Li-
cense. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the
work (which must be distributed under Sections 1 and 2 above); and,
if the work is an executable linked with the Library, with the complete

144

machine-readable ”work that uses the Library”, as object code and/or
source code, so that the user can modify the Library and then relink to
produce a modified executable containing the modified Library. (It is
understood that the user who changes the contents of definitions files
in the Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (1) uses at run time a copy of the library
already present on the user’s computer system, rather than copying
library functions into the executable, and (2) will operate properly with
a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work
was made with.

c) Accompany the work with a written offer, valid for at least three years,
to give the same user the materials specified in Subsection 6a, above,
for a charge no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified
materials from the same place.

e) Verify that the user has already received a copy of these materials or
that you have already sent this user a copy.

For an executable, the required form of the ”work that uses the Library” must
include any data and utility programs needed for reproducing the executable
from it. However, as a special exception, the materials to be distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of
other proprietary libraries that do not normally accompany the operating
system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-
by-side in a single library together with other library facilities not covered
by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other library
facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities. This must
be distributed under the terms of the Sections above.

145

b) Give prominent notice with the combined library of the fact that part
of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Li-
brary or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Library
(or any work based on the Library), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or
modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library),
the recipient automatically receives a license from the original licensor to
copy, distribute, link with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that con-
tradict the conditions of this License, they do not excuse you from the condi-
tions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that

146

system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Library under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of
the Lesser General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies
a version number of this License which applies to it and ”any later version”,
you have the option of following the terms and conditions either of that
version or of any later version published by the Free Software Foundation. If
the Library does not specify a license version number, you may choose any
version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to
ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY ”AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

147

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO
OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible
use to the public, we recommend making it free software that everyone can
redistribute and change. You can do so by permitting redistribution under
these terms (or, alternatively, under the terms of the ordinary General Public
License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively convey
the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

148

Also add information on how to contact you by electronic and paper
mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ”copyright disclaimer” for the library, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

149

	Introduction
	Description
	Requirements
	Compiling
	Linux
	MS Windows
	Mac OSX
	QNX

	Copyright
	Version history
	Files in the distribution
	Doxygen documentation

	Reference manual
	3D homogeneous transforms
	The Quaternion class
	The Robot and mRobot classes
	Robot and mRobot object initialization
	Kinematics
	Dynamics
	Linearized dynamics

	The Spl_Cubic class
	The Spl_path class
	The Spl_Quaternion class
	The Trajectory_Select class
	The CLIK class
	The Proportional_Derivative class
	The Computed_torque_method class
	The Resolve_acc class
	The Impedance class
	The Control_Select class
	The Stewart class
	The IO_matrix_file class
	Graphics
	Config class
	Miscellaneous
	Summary of functions

	Reporting bugs, contributions and comments
	Reporting bugs
	Making a contribution to the package
	Citing the package

	Credits and acknowledgments
	Future developments
	Recursive Newton-Euler algorithms, DH notation
	Recursive Newton-Euler formulation
	Recursive linearized Newton-Euler formulation

	Recursive Newton-Euler algorithms, modified DH notation
	Recursive Newton-Euler formulation
	Recursive linearized Newton-Euler formulation

	GNU Lesser General Public License

